Machine Learning - Introduction#

Machine learning is a type of artificial intelligence that teaches machines to identify patterns, make predictions or classify without being explicitly programmed. Instead of telling a computer exactly what to do, you provide it with lots of examples and let it figure out how to solve a problem on its own.

Examples#

Diseases Progression

diabetes

Image Classification

brain-tumor

Source: CA Cancer J Clin March/April 2019. doi: 10.3322/caac.21552. CC BY 4.0.

Market Segmentation

market

Play a videogame

mario

There are three main types of machine learning problems:

  • Supervised learning: The machine learning algorithm is trained on a labeled dataset, where the input data is paired with the correct output data. The algorithm learns to make predictions by mapping input data to output data.

  • Unsupervised learning: The machine learning algorithm is trained on an unlabeled dataset, where the input data is not paired with the correct output data. The algorithm learns to identify patterns and relationships in the data on its own.

  • Reinforcement learning: The machine learning algorithm learns through trial and error by receiving feedback in the form of rewards or penalties. The algorithm learns to make decisions that maximize its reward over time.

Supervised Learning#

Labels can be numeric or categorical, for each case you should use a suitable algorithm.

Regression#

import pandas as pd
from sklearn import datasets

diabetes_data = datasets.load_diabetes(as_frame=True)
print(diabetes_data.DESCR)
.. _diabetes_dataset:

Diabetes dataset
----------------

Ten baseline variables, age, sex, body mass index, average blood
pressure, and six blood serum measurements were obtained for each of n =
442 diabetes patients, as well as the response of interest, a
quantitative measure of disease progression one year after baseline.

**Data Set Characteristics:**

  :Number of Instances: 442

  :Number of Attributes: First 10 columns are numeric predictive values

  :Target: Column 11 is a quantitative measure of disease progression one year after baseline

  :Attribute Information:
      - age     age in years
      - sex
      - bmi     body mass index
      - bp      average blood pressure
      - s1      tc, total serum cholesterol
      - s2      ldl, low-density lipoproteins
      - s3      hdl, high-density lipoproteins
      - s4      tch, total cholesterol / HDL
      - s5      ltg, possibly log of serum triglycerides level
      - s6      glu, blood sugar level

Note: Each of these 10 feature variables have been mean centered and scaled by the standard deviation times the square root of `n_samples` (i.e. the sum of squares of each column totals 1).

Source URL:
https://www4.stat.ncsu.edu/~boos/var.select/diabetes.html

For more information see:
Bradley Efron, Trevor Hastie, Iain Johnstone and Robert Tibshirani (2004) "Least Angle Regression," Annals of Statistics (with discussion), 407-499.
(https://web.stanford.edu/~hastie/Papers/LARS/LeastAngle_2002.pdf)
diabetes_X = diabetes_data.data
diabetes_X
age sex bmi bp s1 s2 s3 s4 s5 s6
0 0.038076 0.050680 0.061696 0.021872 -0.044223 -0.034821 -0.043401 -0.002592 0.019907 -0.017646
1 -0.001882 -0.044642 -0.051474 -0.026328 -0.008449 -0.019163 0.074412 -0.039493 -0.068332 -0.092204
2 0.085299 0.050680 0.044451 -0.005670 -0.045599 -0.034194 -0.032356 -0.002592 0.002861 -0.025930
3 -0.089063 -0.044642 -0.011595 -0.036656 0.012191 0.024991 -0.036038 0.034309 0.022688 -0.009362
4 0.005383 -0.044642 -0.036385 0.021872 0.003935 0.015596 0.008142 -0.002592 -0.031988 -0.046641
... ... ... ... ... ... ... ... ... ... ...
437 0.041708 0.050680 0.019662 0.059744 -0.005697 -0.002566 -0.028674 -0.002592 0.031193 0.007207
438 -0.005515 0.050680 -0.015906 -0.067642 0.049341 0.079165 -0.028674 0.034309 -0.018114 0.044485
439 0.041708 0.050680 -0.015906 0.017293 -0.037344 -0.013840 -0.024993 -0.011080 -0.046883 0.015491
440 -0.045472 -0.044642 0.039062 0.001215 0.016318 0.015283 -0.028674 0.026560 0.044529 -0.025930
441 -0.045472 -0.044642 -0.073030 -0.081413 0.083740 0.027809 0.173816 -0.039493 -0.004222 0.003064

442 rows × 10 columns

diabetes_y = diabetes_data.target
diabetes_y
0      151.0
1       75.0
2      141.0
3      206.0
4      135.0
       ...  
437    178.0
438    104.0
439    132.0
440    220.0
441     57.0
Name: target, Length: 442, dtype: float64
from sklearn.linear_model import LinearRegression

model = LinearRegression()
model.fit(diabetes_X, diabetes_y)
print(f"Coefficients:\n {model.coef_.T}\n")
print(f"Score: {model.score(diabetes_X, diabetes_y)}")
Coefficients:
 [ -10.0098663  -239.81564367  519.84592005  324.3846455  -792.17563855
  476.73902101  101.04326794  177.06323767  751.27369956   67.62669218]

Score: 0.5177484222203499
from sklearn.linear_model import Ridge

model = Ridge(alpha=0.1)
model.fit(diabetes_X, diabetes_y)
print(f"Coefficients:\n {model.coef_.T}\n")
print(f"Score: {model.score(diabetes_X, diabetes_y)}")
Coefficients:
 [   1.30870543 -207.19241786  489.69517109  301.76405786  -83.46603399
  -70.8268319  -188.67889782  115.7121356   443.81291747   86.7493154 ]

Score: 0.5125619902742505
from sklearn.linear_model import Lasso

model = Lasso(alpha=0.1)
model.fit(diabetes_X, diabetes_y)
print(f"Coefficients:\n {model.coef_.T}\n")
print(f"Score: {model.score(diabetes_X, diabetes_y)}")
Coefficients:
 [  -0.         -155.3599757   517.18679544  275.07723537  -52.53936509
   -0.         -210.1579914     0.          483.91264753   33.67396468]

Score: 0.5088391185938332
from sklearn.tree import DecisionTreeRegressor

model = DecisionTreeRegressor()
model.fit(diabetes_X, diabetes_y)
# print(f"Coefficients:\n {model.coef_.T}\n")
print(f"Score: {model.score(diabetes_X, diabetes_y)}")
Score: 1.0

Classification#

breast_cancer_data = datasets.load_breast_cancer(as_frame=True)
print(breast_cancer_data.DESCR)
.. _breast_cancer_dataset:

Breast cancer wisconsin (diagnostic) dataset
--------------------------------------------

**Data Set Characteristics:**

    :Number of Instances: 569

    :Number of Attributes: 30 numeric, predictive attributes and the class

    :Attribute Information:
        - radius (mean of distances from center to points on the perimeter)
        - texture (standard deviation of gray-scale values)
        - perimeter
        - area
        - smoothness (local variation in radius lengths)
        - compactness (perimeter^2 / area - 1.0)
        - concavity (severity of concave portions of the contour)
        - concave points (number of concave portions of the contour)
        - symmetry
        - fractal dimension ("coastline approximation" - 1)

        The mean, standard error, and "worst" or largest (mean of the three
        worst/largest values) of these features were computed for each image,
        resulting in 30 features.  For instance, field 0 is Mean Radius, field
        10 is Radius SE, field 20 is Worst Radius.

        - class:
                - WDBC-Malignant
                - WDBC-Benign

    :Summary Statistics:

    ===================================== ====== ======
                                           Min    Max
    ===================================== ====== ======
    radius (mean):                        6.981  28.11
    texture (mean):                       9.71   39.28
    perimeter (mean):                     43.79  188.5
    area (mean):                          143.5  2501.0
    smoothness (mean):                    0.053  0.163
    compactness (mean):                   0.019  0.345
    concavity (mean):                     0.0    0.427
    concave points (mean):                0.0    0.201
    symmetry (mean):                      0.106  0.304
    fractal dimension (mean):             0.05   0.097
    radius (standard error):              0.112  2.873
    texture (standard error):             0.36   4.885
    perimeter (standard error):           0.757  21.98
    area (standard error):                6.802  542.2
    smoothness (standard error):          0.002  0.031
    compactness (standard error):         0.002  0.135
    concavity (standard error):           0.0    0.396
    concave points (standard error):      0.0    0.053
    symmetry (standard error):            0.008  0.079
    fractal dimension (standard error):   0.001  0.03
    radius (worst):                       7.93   36.04
    texture (worst):                      12.02  49.54
    perimeter (worst):                    50.41  251.2
    area (worst):                         185.2  4254.0
    smoothness (worst):                   0.071  0.223
    compactness (worst):                  0.027  1.058
    concavity (worst):                    0.0    1.252
    concave points (worst):               0.0    0.291
    symmetry (worst):                     0.156  0.664
    fractal dimension (worst):            0.055  0.208
    ===================================== ====== ======

    :Missing Attribute Values: None

    :Class Distribution: 212 - Malignant, 357 - Benign

    :Creator:  Dr. William H. Wolberg, W. Nick Street, Olvi L. Mangasarian

    :Donor: Nick Street

    :Date: November, 1995

This is a copy of UCI ML Breast Cancer Wisconsin (Diagnostic) datasets.
https://goo.gl/U2Uwz2

Features are computed from a digitized image of a fine needle
aspirate (FNA) of a breast mass.  They describe
characteristics of the cell nuclei present in the image.

Separating plane described above was obtained using
Multisurface Method-Tree (MSM-T) [K. P. Bennett, "Decision Tree
Construction Via Linear Programming." Proceedings of the 4th
Midwest Artificial Intelligence and Cognitive Science Society,
pp. 97-101, 1992], a classification method which uses linear
programming to construct a decision tree.  Relevant features
were selected using an exhaustive search in the space of 1-4
features and 1-3 separating planes.

The actual linear program used to obtain the separating plane
in the 3-dimensional space is that described in:
[K. P. Bennett and O. L. Mangasarian: "Robust Linear
Programming Discrimination of Two Linearly Inseparable Sets",
Optimization Methods and Software 1, 1992, 23-34].

This database is also available through the UW CS ftp server:

ftp ftp.cs.wisc.edu
cd math-prog/cpo-dataset/machine-learn/WDBC/

.. topic:: References

   - W.N. Street, W.H. Wolberg and O.L. Mangasarian. Nuclear feature extraction 
     for breast tumor diagnosis. IS&T/SPIE 1993 International Symposium on 
     Electronic Imaging: Science and Technology, volume 1905, pages 861-870,
     San Jose, CA, 1993.
   - O.L. Mangasarian, W.N. Street and W.H. Wolberg. Breast cancer diagnosis and 
     prognosis via linear programming. Operations Research, 43(4), pages 570-577, 
     July-August 1995.
   - W.H. Wolberg, W.N. Street, and O.L. Mangasarian. Machine learning techniques
     to diagnose breast cancer from fine-needle aspirates. Cancer Letters 77 (1994) 
     163-171.
breast_cancer_X = breast_cancer_data.data
breast_cancer_X
mean radius mean texture mean perimeter mean area mean smoothness mean compactness mean concavity mean concave points mean symmetry mean fractal dimension ... worst radius worst texture worst perimeter worst area worst smoothness worst compactness worst concavity worst concave points worst symmetry worst fractal dimension
0 17.99 10.38 122.80 1001.0 0.11840 0.27760 0.30010 0.14710 0.2419 0.07871 ... 25.380 17.33 184.60 2019.0 0.16220 0.66560 0.7119 0.2654 0.4601 0.11890
1 20.57 17.77 132.90 1326.0 0.08474 0.07864 0.08690 0.07017 0.1812 0.05667 ... 24.990 23.41 158.80 1956.0 0.12380 0.18660 0.2416 0.1860 0.2750 0.08902
2 19.69 21.25 130.00 1203.0 0.10960 0.15990 0.19740 0.12790 0.2069 0.05999 ... 23.570 25.53 152.50 1709.0 0.14440 0.42450 0.4504 0.2430 0.3613 0.08758
3 11.42 20.38 77.58 386.1 0.14250 0.28390 0.24140 0.10520 0.2597 0.09744 ... 14.910 26.50 98.87 567.7 0.20980 0.86630 0.6869 0.2575 0.6638 0.17300
4 20.29 14.34 135.10 1297.0 0.10030 0.13280 0.19800 0.10430 0.1809 0.05883 ... 22.540 16.67 152.20 1575.0 0.13740 0.20500 0.4000 0.1625 0.2364 0.07678
... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...
564 21.56 22.39 142.00 1479.0 0.11100 0.11590 0.24390 0.13890 0.1726 0.05623 ... 25.450 26.40 166.10 2027.0 0.14100 0.21130 0.4107 0.2216 0.2060 0.07115
565 20.13 28.25 131.20 1261.0 0.09780 0.10340 0.14400 0.09791 0.1752 0.05533 ... 23.690 38.25 155.00 1731.0 0.11660 0.19220 0.3215 0.1628 0.2572 0.06637
566 16.60 28.08 108.30 858.1 0.08455 0.10230 0.09251 0.05302 0.1590 0.05648 ... 18.980 34.12 126.70 1124.0 0.11390 0.30940 0.3403 0.1418 0.2218 0.07820
567 20.60 29.33 140.10 1265.0 0.11780 0.27700 0.35140 0.15200 0.2397 0.07016 ... 25.740 39.42 184.60 1821.0 0.16500 0.86810 0.9387 0.2650 0.4087 0.12400
568 7.76 24.54 47.92 181.0 0.05263 0.04362 0.00000 0.00000 0.1587 0.05884 ... 9.456 30.37 59.16 268.6 0.08996 0.06444 0.0000 0.0000 0.2871 0.07039

569 rows × 30 columns

breast_cancer_y = breast_cancer_data.target
breast_cancer_y
0      0
1      0
2      0
3      0
4      0
      ..
564    0
565    0
566    0
567    0
568    1
Name: target, Length: 569, dtype: int64
from sklearn.linear_model import LogisticRegression

model = LogisticRegression(max_iter=10000)
model.fit(breast_cancer_X, breast_cancer_y)
print(f"Coefficients:\n {model.coef_}\n")
print(f"Score: {model.score(breast_cancer_X, breast_cancer_y)}")
Coefficients:
 [[ 0.97155351  0.17563154 -0.26255918  0.02235406 -0.17542576 -0.208396
  -0.5178728  -0.29039348 -0.25755614 -0.02809376 -0.06933213  1.24550348
   0.15054852 -0.110651   -0.02503941  0.07211855 -0.02753487 -0.037132
  -0.03238054  0.01476302  0.17889937 -0.43120065 -0.11444469 -0.01354467
  -0.35273091 -0.65900345 -1.38635246 -0.59469895 -0.69872478 -0.08998117]]

Score: 0.9578207381370826
from sklearn.neighbors import KNeighborsClassifier

model = KNeighborsClassifier()
model.fit(breast_cancer_X, breast_cancer_y)
print(f"Score: {model.score(breast_cancer_X, breast_cancer_y)}")
Score: 0.9472759226713533
from sklearn.tree import DecisionTreeClassifier

model = DecisionTreeClassifier()
model.fit(breast_cancer_X, breast_cancer_y)
print(f"Score: {model.score(breast_cancer_X, breast_cancer_y)}")
Score: 1.0

Unsupervised Learning#

Clustering#

filepath = "https://raw.githubusercontent.com/aoguedao/gmu-casbbi-nrt/main/data/gapminder.csv"
data = pd.read_csv(filepath, usecols=[1, 4, 5, 6])
data.head()
country continent life_exp gdp_cap
0 Afghanistan Asia 43.828 974.580338
1 Albania Europe 76.423 5937.029526
2 Algeria Africa 72.301 6223.367465
3 Angola Africa 42.731 4797.231267
4 Argentina Americas 75.320 12779.379640
from sklearn.cluster import KMeans

K = 3
kmeans = KMeans(n_clusters=K)
X = data.drop(columns=["country", "continent"])
kmeans.fit(X)
/home/alonsolml/mambaforge/envs/casbbi-nrt-ds/lib/python3.11/site-packages/sklearn/cluster/_kmeans.py:870: FutureWarning: The default value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to suppress the warning
  warnings.warn(
KMeans(n_clusters=3)
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
data["label"] = kmeans.labels_
data.head()
country continent life_exp gdp_cap label
0 Afghanistan Asia 43.828 974.580338 1
1 Albania Europe 76.423 5937.029526 1
2 Algeria Africa 72.301 6223.367465 1
3 Angola Africa 42.731 4797.231267 1
4 Argentina Americas 75.320 12779.379640 0
data.query("label == 0")
country continent life_exp gdp_cap label
4 Argentina Americas 75.320 12779.379640 0
13 Botswana Africa 50.728 12569.851770 0
14 Brazil Americas 72.390 9065.800825 0
15 Bulgaria Europe 73.005 10680.792820 0
23 Chile Americas 78.553 13171.638850 0
29 Costa Rica Americas 78.782 9645.061420 0
31 Croatia Europe 75.748 14619.222720 0
32 Cuba Americas 78.273 8948.102923 0
33 Czech Republic Europe 76.486 22833.308510 0
40 Equatorial Guinea Africa 51.579 12154.089750 0
45 Gabon Africa 56.735 13206.484520 0
56 Hungary Europe 73.338 18008.944440 0
60 Iran Asia 70.964 11605.714490 0
70 Korea, Rep. Asia 78.623 23348.139730 0
72 Lebanon Asia 71.993 10461.058680 0
75 Libya Africa 73.952 12057.499280 0
78 Malaysia Asia 74.241 12451.655800 0
81 Mauritius Africa 72.801 10956.991120 0
82 Mexico Americas 76.195 11977.574960 0
84 Montenegro Europe 74.543 9253.896111 0
96 Oman Asia 75.640 22316.192870 0
98 Panama Americas 75.537 9809.185636 0
102 Poland Europe 75.563 15389.924680 0
103 Portugal Europe 78.098 20509.647770 0
104 Puerto Rico Americas 78.746 19328.709010 0
106 Romania Europe 72.476 10808.475610 0
109 Saudi Arabia Asia 72.777 21654.831940 0
111 Serbia Europe 74.002 9786.534714 0
114 Slovak Republic Europe 74.663 18678.314350 0
117 South Africa Africa 49.339 9269.657808 0
129 Trinidad and Tobago Americas 69.819 18008.509240 0
131 Turkey Europe 71.777 8458.276384 0
135 Uruguay Americas 76.384 10611.462990 0
136 Venezuela Americas 73.747 11415.805690 0
data.query("label == 1")
country continent life_exp gdp_cap label
0 Afghanistan Asia 43.828 974.580338 1
1 Albania Europe 76.423 5937.029526 1
2 Algeria Africa 72.301 6223.367465 1
3 Angola Africa 42.731 4797.231267 1
8 Bangladesh Asia 64.062 1391.253792 1
... ... ... ... ... ...
137 Vietnam Asia 74.249 2441.576404 1
138 West Bank and Gaza Asia 73.422 3025.349798 1
139 Yemen, Rep. Asia 62.698 2280.769906 1
140 Zambia Africa 42.384 1271.211593 1
141 Zimbabwe Africa 43.487 469.709298 1

80 rows × 5 columns

data.query("label == 2")
country continent life_exp gdp_cap label
5 Australia Oceania 81.235 34435.36744 2
6 Austria Europe 79.829 36126.49270 2
7 Bahrain Asia 75.635 29796.04834 2
9 Belgium Europe 79.441 33692.60508 2
20 Canada Americas 80.653 36319.23501 2
34 Denmark Europe 78.332 35278.41874 2
43 Finland Europe 79.313 33207.08440 2
44 France Europe 80.657 30470.01670 2
47 Germany Europe 79.406 32170.37442 2
49 Greece Europe 79.483 27538.41188 2
55 Hong Kong, China Asia 82.208 39724.97867 2
57 Iceland Europe 81.757 36180.78919 2
62 Ireland Europe 78.885 40675.99635 2
63 Israel Asia 80.745 25523.27710 2
64 Italy Europe 80.546 28569.71970 2
66 Japan Asia 82.603 31656.06806 2
71 Kuwait Asia 77.588 47306.98978 2
90 Netherlands Europe 79.762 36797.93332 2
91 New Zealand Oceania 80.204 25185.00911 2
95 Norway Europe 80.196 49357.19017 2
113 Singapore Asia 79.972 47143.17964 2
115 Slovenia Europe 77.926 25768.25759 2
118 Spain Europe 80.941 28821.06370 2
122 Sweden Europe 80.884 33859.74835 2
123 Switzerland Europe 81.701 37506.41907 2
125 Taiwan Asia 78.400 28718.27684 2
133 United Kingdom Europe 79.425 33203.26128 2
134 United States Americas 78.242 42951.65309 2

Machine Learning is not always the solution!#

when

Source: https://mitsloan.mit.edu/ideas-made-to-matter/machine-learning-explained