{ "cells": [ { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "# ML - Classification" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "import numpy as np\n", "import pandas as pd\n", "import matplotlib.pyplot as plt\n", "import seaborn as sns\n", "\n", "from pathlib import Path\n", "from sklearn import datasets\n", "\n", "sns.set_theme(style=\"whitegrid\")" ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "## Motivation" ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "Space Shuttle Challenger Disaster" ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "
By Kennedy Space Center
\n", " | temp_f | \n", "nm_bad_rings | \n", "
---|---|---|
0 | \n", "53 | \n", "3 | \n", "
1 | \n", "56 | \n", "1 | \n", "
2 | \n", "57 | \n", "1 | \n", "
3 | \n", "63 | \n", "0 | \n", "
4 | \n", "66 | \n", "0 | \n", "
LogisticRegression()In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
LogisticRegression()
\n", " | pixel_0_0 | \n", "pixel_0_1 | \n", "pixel_0_2 | \n", "pixel_0_3 | \n", "pixel_0_4 | \n", "pixel_0_5 | \n", "pixel_0_6 | \n", "pixel_0_7 | \n", "pixel_1_0 | \n", "pixel_1_1 | \n", "... | \n", "pixel_6_7 | \n", "pixel_7_0 | \n", "pixel_7_1 | \n", "pixel_7_2 | \n", "pixel_7_3 | \n", "pixel_7_4 | \n", "pixel_7_5 | \n", "pixel_7_6 | \n", "pixel_7_7 | \n", "target | \n", "
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | \n", "0.0 | \n", "0.0 | \n", "5.0 | \n", "13.0 | \n", "9.0 | \n", "1.0 | \n", "0.0 | \n", "0.0 | \n", "0.0 | \n", "0.0 | \n", "... | \n", "0.0 | \n", "0.0 | \n", "0.0 | \n", "6.0 | \n", "13.0 | \n", "10.0 | \n", "0.0 | \n", "0.0 | \n", "0.0 | \n", "0 | \n", "
1 | \n", "0.0 | \n", "0.0 | \n", "0.0 | \n", "12.0 | \n", "13.0 | \n", "5.0 | \n", "0.0 | \n", "0.0 | \n", "0.0 | \n", "0.0 | \n", "... | \n", "0.0 | \n", "0.0 | \n", "0.0 | \n", "0.0 | \n", "11.0 | \n", "16.0 | \n", "10.0 | \n", "0.0 | \n", "0.0 | \n", "1 | \n", "
2 | \n", "0.0 | \n", "0.0 | \n", "0.0 | \n", "4.0 | \n", "15.0 | \n", "12.0 | \n", "0.0 | \n", "0.0 | \n", "0.0 | \n", "0.0 | \n", "... | \n", "0.0 | \n", "0.0 | \n", "0.0 | \n", "0.0 | \n", "3.0 | \n", "11.0 | \n", "16.0 | \n", "9.0 | \n", "0.0 | \n", "2 | \n", "
3 | \n", "0.0 | \n", "0.0 | \n", "7.0 | \n", "15.0 | \n", "13.0 | \n", "1.0 | \n", "0.0 | \n", "0.0 | \n", "0.0 | \n", "8.0 | \n", "... | \n", "0.0 | \n", "0.0 | \n", "0.0 | \n", "7.0 | \n", "13.0 | \n", "13.0 | \n", "9.0 | \n", "0.0 | \n", "0.0 | \n", "3 | \n", "
4 | \n", "0.0 | \n", "0.0 | \n", "0.0 | \n", "1.0 | \n", "11.0 | \n", "0.0 | \n", "0.0 | \n", "0.0 | \n", "0.0 | \n", "0.0 | \n", "... | \n", "0.0 | \n", "0.0 | \n", "0.0 | \n", "0.0 | \n", "2.0 | \n", "16.0 | \n", "4.0 | \n", "0.0 | \n", "0.0 | \n", "4 | \n", "
5 rows × 65 columns
\n", "LogisticRegression(max_iter=1000)In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
LogisticRegression(max_iter=1000)
KNeighborsClassifier()In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
KNeighborsClassifier()